terça-feira, 30 de março de 2010

Large Hadron Colider - LHC


A cerca de 100 metros de profundidade, sob a fronteira entre a França e a Suíça, existe uma máquina circular que pode nos revelar os segredos do universo. Ou, de acordo com algumas pessoas, poderia destruir toda a vida na Terra. De uma maneira ou de outra, trata-se da maior máquina do mundo e examinará as mais ínfimas partículas do universo. Estamos falando do Grande Colisor de Hádrons ou LHC (Large Hadron Collider).

LHC é parte de um projeto conduzido pela Organização Européia de Pesquisa Nuclear, também conhecida como CERN (em inglês). O LHC é mais um componente do complexo de aceleradores do CERN nas cercanias de Genebra, Suíça. Assim que for acionado, o LHC produzirá feixes de prótons e íons em velocidades que se aproximam da velocidade da luz. Ele fará com que os feixes colidam uns com os outros e em seguida registrará os eventos resultantes dessa colisão. Os cientistas esperam que esses eventos possam nos dizer mais sobre como o universo começou e o que o compõe.

O LHC é o mais ambicioso e o mais poderoso acelerador de partículas construído até hoje. Milhares de cientistas de dezenas de países estão trabalhando juntos - e competindo uns com os outros - para realizar novas descobertas. Seis locais ao longo da circunferência do LHC recolhem os dados das diferentes experiências. Algumas dessas experiências se sobrepõem e os cientistas estarão tentando ser os primeiros a descobrir novas e importantes informações.


O propósito do grande colisor de hádrons é ampliar o conhecimento humano sobre o universo. Embora as futuras descobertas dos cientistas possam conduzir a aplicações práticas, não é essa a razão para que centenas de cientistas e engenheiros estejam construindo o LHC. Essa máquina foi construída para ampliar o nosso conhecimento. Considerando os custos de bilhões de dólares e a necessária cooperação de numerosos países para criá-la, a ausência conspícua de uma aplicação prática pode ser surpreendente.

O resultado
No dia 30 de março de 2010, os cientistas do Cern anunciaram que conseguiram chocar prótons geradores de uma energia recorde de 7 teravolts - o máximo de energia que os pesquisadores pretendiam no LHC. Ao promover colisões velozes e fortes entre prótons, o LHC faz com que eles se rompam em subpartículas atômicas menores. Essas minúsculas subpartículas são muito instáveis e só existem por frações de segundos antes de decair ou se recombinar a outras subpartículas.

Segundo o Cern, cada colisão entre as partículas permite que os pesquisadores vinculados ao projeto (são milhares espalhados pelo mundo e interligados por uma rede em grade) "rastreiem e analisem o que aconteceu um nanossegundo depois do hipotéticos Big Bang original". De acordo com a teoria do Big Bang, toda a matéria do Universo em seus primeiros momentos consistia nessas minúsculas subpartículas. À medida que o Universo se expandia e se resfriava, elas se combinaram para formar partículas maiores, tais como prótons e nêutrons.

A análise dos dados obtidos no choque de prótons de 7 teravolts deve levar anos. Os cientistas vão se concentrar na procura pelo bóson de Higgs, a subpartícula que, no Big Bang, teria permitido que escombros gasosos se transformassem em massa e formassem galáxias e planetas como a Terra.

O que o LHC está procurando?
Em uma tentativa de compreender o nosso universo, incluindo a maneira como ele funciona e sua estrutura efetiva, os cientistas propuseram uma teoria conhecida como Modelo Padrão. Essa teoria tenta definir e explicar as partículas fundamentais que tornam o universo aquilo que ele é. Ela combina elementos da Teoria da Relatividade de Einstein e da Teoria Quântica. Também lida com três das quatro forças básicas do universo: a interação nuclear forte, a interação nuclear fraca e a força eletromagnética. A teoria não trata dos efeitos da gravidade, a quarta força fundamental.

O Modelo Padrão faz diversas previsões sobre o universo, muitas das quais parecem ser verdadeiras, de acordo com diversos experimentos. Mas há outros aspectos do modelo que continuam não comprovados. Um deles é uma partícula teórica conhecida como bóson de Higgs.

O bóson de Higgs é uma partícula que poderia responder a diversas questões sobre massa. Por que a matéria tem massa? Os cientistas identificaram partículas que não têm massa, como os neutrinos. Por que um tipo de partícula teria massa e outra não? Os cientistas propuseram diversas idéias para a existência de massa. A mais simples delas é o mecanismo de Higgs. Essa teoria diz que pode haver uma partícula e uma força de mediação correspondente, que explicariam porque algumas partículas têm massa. A partícula teórica jamais foi observada e pode nem mesmo existir. Alguns cientistas esperam que os eventos criados pelo LHC também revelem indícios quanto à existência do bóson de Higgs. Outros esperam que os eventos ofereçam indícios de novas informações que ainda não foram consideradas.

Outra questão que os cientistas discutem sobre a matéria se refere às condições iniciais do universo. Nos primeiros momentos do universo, matéria e energia estavam acopladas. Logo depois que matéria e energia se separaram, partículas de matéria e de antimatéria aniquilaram umas às outras. Se houvesse quantidade igual de matéria e antimatéria, as duas espécies de partículas teriam se cancelado mutuamente. Mas felizmente, para nós, havia um pouco mais de matéria do que de antimatéria no universo. Os cientistas esperam que seja possível observar a antimatéria durante eventos do LHC. Isso poderia nos ajudar a compreender por que existia essa minúscula diferença quando o universo começou.

A matéria negra (mais conhecida como matéria escura) também pode desempenhar papel importante nas pesquisas do LHC. Nossa atual compreensão do universo sugere que a matéria que somos capazes de observar corresponde a cerca de 4% do total de matéria que existe. Quando observamos o movimento de galáxias e de outros corpos celestiais, vemos que sua trajetória sugere que existe muito mais matéria no universo do que podemos detectar. Os cientistas chamam essa matéria não detectável de matéria negra. Juntas, a matéria visível e a matéria negra podem responder por cerca de 25% do universo. O restante viria de uma força chamada de energia negra (ou energia escura), uma energia hipotética que contribui para a expansão do universo. Os cientistas esperam que suas experiências ofereçam novas evidência da existência da matéria negra e da energia negra ou indícios que sustentem uma teoria alternativa.

Nenhum comentário:

Postar um comentário